JOURNAL OF COMPUTATIONAL PHYsICS 111, 291-323 (1994)

Fast Triangulated Vortex Methods for the 2D Euler Equations

(GIOVANNI RUSs0

Universita del’ Aquila, Dipartimento di Matematica, Via Vetoio, Loc Coppite, 67010 L' Aquilu, Italy

AND

JOHN A. STRAIN*

Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Received March 9, 1993

Vortex methods for inviscid incompressible two-dimensional fluid
flow are usually based on blob approximations. This paper presents a
vortex method in which the vorticity is approximated by a piecewise
polynomial interpolant on a Delaunay triangulation of the vortices, An
efficient reconstruction of the Delaunay triangulation at each step
makes the method accurate for long times, The vertices of the triangula-
tion mave with the fluid velocity, which is reconstructed from the vos-
ticity via a simplified fast multipole method for the Biot—Savart law with
a continuous source distribution. The initial distribution of vortices is
constructed from the initial vorticity field by an adaptive approximation
method which produces good accuracy even for discontinuous initial
data. Numerical results show that the method is highly accurate over
long time intervals. Experiments with single and multiple circular and
elliptical rotating patches of both piecewise constant and smooth
vorticity indicate that the method produces much smaller errors than
blob methods with the same number of degrees of freedom, at little
additional cost. Generalizations to domains with boundaries, viscous
flow, and three space dimensions are discussed.  © 1994 Academic

Press, Inc.
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1. INTRODUCTION

Vortex methods simulate fluid flow by moving a collec-
tion of markers carrying vorticity. They are grid-free, with
little or no numerical diffusion, and naturally adaptive, and
they preserve moments of the vorticity. They have been
generalized in many directions and applied to complex
high-Reynolds-number flow [15, 16, 29, 14, 3, 1, 36, 18,
40, 421].

The classical vortex-blob method due to Chorin [15] is
based on smoothing point vortices [3%9] into smooth biobs
of vorticity, to obtain higher accuracy and a more robust
method. Various high-order methods have been constructed
[ 5, 6], but numerical tests show that the order of accuracy
decreases sharply when the flow becomes disorganized. This
paper presents an efficient and accurate new vortex method
which maintains second-order accuracy during long time
integrations.

Different approximations of the vorticity within the same
Lagrangian [ramework lead to other vortex methods.
Piecewise constant approximation of the vorticity has been
used to study the evolution of vortex patches [11, 301.
Piecewise linear approximation has been used for smooth
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flowsin [2, 137. In these methods, the velocity is computed
from a piecewise polynomial approximate vorticity field,
either from the Biot-Savart law or by solving a Poisson
problem. At each time step, the vertices of the triangulation
are moved according to the computed velocity and the
vorticity at the vertices is passively advected. At the next
time step the vorticity is again approximated by a piecewise
linear function on the triangulation and the process is
repeated. These methods converge as the size of the triangles
goes to zero. We briefly recall this background material in
Section 2.

In this paper we present a vortex method based on the
piecewise linear approximation of vorticity on a triangula-
tion. We introduce three important new features which
make the method far more accurate, efficient, and robust:
Delaunay triangulation, fast velocity evaluation, and
adaptive initial triangulaton. Qur algorithm is summarized
in Section 3.

We update a Delaunay triangulation of the vortices
at each time step. A Delaunay triangulation is focally
equiangular, so it maintains a uniform accuracy over long
times. This triangulation can be constructed in O(N log N)
operations, using a fast method described in Section 4.

The second few feature is the fast evaluation of the
velocity field. The velocity field due to a piecewise linear
vorticity on a triangulation can be evaluated exactly. A
straightforward evaluation method, however, results in an
O(N?) computational cost. The complexity can be reduced
by using a fast multipole method; we implemented a sim-
plified O(N*?) version. For N =51200 the fast method is
200 times faster than direct evaluation, and the breakeven
point is about N = 100. Our fast velocity evaluation method
is described in Section 5.

A triangulation allows more flexibility than equal-size
blobs in approximating the initial vorticity. We take advan-
tage of this flexibility to construct the initial tnangulation
adaptively, to resolve the initial vorticity with few degrees of
freedom. As a result, our method can be used to model
discontinuous vortex patches as well as smooth vorticity
fields. Our adaptive triangulation method is discussed in
Section 6.

In Section 7 we present numerical results for smooth and
non-smooth initial data. We compute the evolution of single
and multiple circular and elliptical patches of smooth and
constant vorticity, and compare with the exact solution
when available. Convergence studies for multiple patches
are performed by differencing. We compare our method
with vortex-blob and Lagrangian finite element methods
and show the long-time accuracy, efficiency, and robustness
of cur method.

In Section 8 we discuss generalizations of the method. We
consider viscosity, boundary conditions, three-dimensional
problems, higher-order methods. In Section 9 we discuss
our conclusions.
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2. VORTEX METHODS

In this section we review the vorticity formulation of the
2D Euler equations, the vortex-blob method, and the
Lagrangian finite element method on which the present
method is based.

The Euler equations of two-dimensional incompressible
inviscid flow are

ou

1
-a—t+(u-V)u=—EVP, (2.1)

V.u=0, (2.2)
where p is the (constant) density of the fluid, = (u., u,) is
the velocity, and p the pressure. Both 1 and p are functions
of z=(x, y} and t. {We will find it convenient on several
occasions to use complex notation, in which z=(x, y)=
x + iy identifies a point in R?, thought of as the complex
plane.)
The curl of (2.1} gives the vorticity equation

Jw

cw V= )

6r+“f Jo=0, (2.3)
where

w:=0.u,—0,u, (24)

is the vorticity. Thus the vorticity is transported passively
along streamlines. By (2.2), u is the curl of a vector field; in
two dimensions the vector field has only one non-zero
component, the stream function . Then

N

d
.= ay H u_v -

T3 (2.5)

and (2.4) becomes a Poisson equation for the stream
function:

— M=,

In unbounded flow with zero velocity far from the origin,
this equation can be solved with the boundary condition
Vi — 0 at oo to obtain the “Biot-Savart law™

ulz, 1) = ij Kz—2) o2, 1) dz, (2.6)

1 (-
K= .
2n IZIZ( x)
Flow in a demain with a boundary will be considered in
Section 8§,

where

(2.7)
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The flow can also be described by the flow map
z: R?x [0, 7] —» R* defined so that z({, 1} is the position of
the fluid particle which at time 1 =0 is at the position {.

By (2.6), z({, t) satisfies

d
Fi & 1= jﬂz K D —2) oz, ) d. (28)

Put_ting ' =z{{’, ) inside the integral gives
4 (=] KGlG 1) 04 ) oleC 0,
o (& 1)= - K(z({, ) — (0, 1)) (2L, 1), ) ]

= jﬂz K(2(, 1) = 2L, 1)) wo(C) dl’ (2.9)

since the Jacobian of z({, ¢) is unity.

Vortex methods are based on various recipes for
evaluating the Biot-Savart integral with a quadrature
formula. Discretizations based on the formulation (2.9)
give Lagrangian methods, where the space variable is the
initial location of the fluid marker {. The convergence
study of vortex-blob methods is often based on this
formulation, which has the weakness common to most
Lagrangian methods: they become inaccurate as the grid is
greatly distorted. A “free-Lagrangian™ method based on
approximation of the vorticity at time ¢ in (2.8) over-
comes this difficulty and helps provide a more accurate
approximation of the velocity.

The “point-vortex method” [39] approximates {2.9) by

2,
Ci Y Kz wolt

FE. 2]

(2.10)

it is very physical since it moves N point vortices with
circulations ;= wo({,;) A Although the method converges
[22], it presents some difficulties, If two vortices come
too close together, the velocity approximation becomes
unbounded. Also, a distribution of point vortices is usually
a poor approximation to a smooth vorticity distribution.

Chorin [15] observed that the singularity can be
mollified by convolving the kernel with a blob function
g5(z) to obtain a smoothed kernel

1 z
Ks=K=*g;, g4z)= 528(5)

The resuiting “vortex—blob” method ts

dz, XN
S ¥ Kz z) woll) 12

i=1

(2.11)

Convergence results for this method are given in [24, 4, 5,
, 25]. The numerical behavior of this method has been
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studied in [34, 427; it has been very widely used in praciice
and generalized to model three-dimensional turbulent flows
with boundaries and combustion [29, 14, 16].

Lagrangian finite element methods, on the other hand,
approximate w in {2.8) by a piecewise lincar {function on
a triangulation. For each ¢ let Z,(¢)={r,(1)}", be a
triangulation covering the support of @ with N vertices
{z,(1}}]_, and let

= {v(z)e C"(R?):

be the space of continuous piecewise linear functions over
F,(1). At each time ¢ the vorticity w(z, ¢) is approximated by
the piecewise linear interpolant w,(z, 1) e V. The velocity is
approximated by

v|,, is linear for each /}

w2, 1) =[ Kz—2) (. 0 dz

‘ZJ

=17

() w2, 1) d=’ (2.12)

in [13] and by solving a Poisson problem in [2]. A natural
algorithm is then obtained by transporting the vertices of
the triangulation along the streamlines defined by

dz,

=z, t
dr h(Zr )
and leaving the topology of the triangulation unchanged.

In this paper, we use (2.12) to approximate the velocity.
Each term

j K(z—2'Yw,(z', 1) d2’

T

(2.13)

in the sum {2.12) can be evaluated ¢xactly, so the evaluation
of the velocity at one vertex costs O(N) operations and the
cost of the velocity evaluation is O{N?). To evaluate (2.13),
we fix a triangle 7 and a vertex z, and take a coordinate
system with origin at z. Then we can write, following [13],

wy(x, y, t)=a+bx+cy

on 1. For each / and J, let

F*‘J‘:j K(z—2') X'y de. (2.14)
Then

f K(z—2') 0,(z') dz' = aF® + bF'* 4 cFO".

Let z,, 2,, z; be the vertices of 7, as in Fig. 1, and set
z4=1£,, Z¢=2z, for convenience. We compute the three
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T2

4l z

73

Z3

F1G. 1. Splitting up the computation of the Biot-Savart integral.

integrals F¥ by splitting t into three triangles with vertex z,
as in Fig. 1, and writing
3

[=Teol.

Tog=1 T

where o, =1 if point z is to the left of Z, 7z, and 0, = —1
otherwise.

On each subtriangle 7,, each term can be expressed in
polar coordinates and evaluated:

Foo_ (—dv, logr+d.6
“\-d.f0—d logr

Fo_ (A sin fcos B+ 3{(dl—dljlogr—d, d,0
N\ Acos’ f+i(di—d?)0+d,.d,logr

FUo_4
Fm:( ;Fl[] ):

where (see Fig. 2}, d, =x,—x,, d,=yo—y,, r=jz—2z)|/

|z —z,|, 0 is the angle z,zz,, B is the angle that Z — z forms
with the x-axis, and A is the area of triangle 7.

2z

ay

Al

FI1G. 2. Triangle r;.
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3. FORMAL DESCRIPTION OF THE ALGORITHM

In this section we summarize our algorithm in a
procedural form, The next three sections will be devoted to
a detailed description of the new features we have added.

Algorithm

Step 1. Input

Read the initial data from a file. The initial file contains:
« time integration parameters
final time, time step, order of Runge-Kutta method
output control parameters
triangulation parameters
frequency of retriangulation
type of triangulation method
{McLain, uniform, adaptive)
fast velocity evaluation parameters
number of terms in expansions
number of neighbor cells
cutoff for refinement
type of initial data
vorticity profile (smooth or discontinuous)
number of vortex patches
e parameters for the adaptive initial grid
error tolerance
maximum level of refinement

Step 2. Initial Conditions

Generate the initial distribution of vertices {z?,i=1... N}
according to the initial vorticity. The following options are
available:

= read the initial trianguiation from a file

« uniform or randomly generated vertices

» adaptive triangulation to resolve @
[described in Section 6]

Assign the initial values of the vorticity w,= w{z?).

Step 3. Main Loop

don=1.---M
Compute the velocity associated to w and z
[see Velocity evaluation below]:
unfl =F((J), Z"_l)
Store the output [every N, time steps |
if the exact solution is known then
evaluate L, and L, relative error by comparison
with the exact solution
end if
Write output [errors, timing, triangulation,
and so on ]} to files.
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Move the points

if [Euler’s method ] then
Z"=z""Tru"" At

else if [second-order Runge—Kutta] then
F=z"""4u"" ' Ar
i=Flw, 7
=z w4 @) 442

else [fourth-order Runge-Kutta]
F=z" o A2

ii'=Fo, 7)

F=z"" 4t 12

i’=Fuw, ?)

F=ztm g A2

i} = Flo, 3)

=" (W 20 R 202 4 53) A1/6
end if

end do

Velocity Evaluation
u= Flw, z)

+ construct a Delaunay triangulation of {z,}
{described in Section 4]
+ evaluate the velocity u at each point z;, i=1---N
with the fast summation method
[described in Section 5].

4. DELAUNAY TRIANGULATION

4.1. Trigngulation and Interpolation

Given a set Z of N points z; in R there are many ways
to connect the points into a mesh . of triangles covering
the convex hull C, of Z. If function values f;= f{z;) are
given at the vertices, each triangulation & produces a
piecewise linear interpolant 7Yz}, the unigue function which
is linear on each triangle of &, is continuous, and has
T{z;)= f;for each j. The error

e (f)=max |f(z) = T(2)]. (4.1)

in such an interpolant can be bounded in terms of the
second derivatives of /, the longest edge length of 7, and the
“condition number” of &, a measure of the angles occurring
in & [51].

We cannot control the second derivatives of f, but we
can minimize the error in linear interpolation given Z by
choosing the best trianpulation for a class of /. Bad triangu-
lations, for most classes have long thin triangles and long
edges. Good triangulations have short edges and very few
long thin triangles. A simple example is shown in Fig. 3. The
best triangulation for a given f'can be very expensive to find.
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Bad Good

FIG. 3. Good and bad triangulations of a simple point set Z.

An affordable alternative is provided by the “Delaunay
triangulation.” It is almost optimal for error bounds, yet can
be constructed in Q(N log N) time. Indeed, [517 shows that
ne other triangulation can reduce the error bounds by more
than a factor of two, while many fast methods for con-
structing the Delaunay triangulation have been proposed
[9, 19, 21, 23, 27, 28, 30, 33, 43, 45]. In this section, we
describe the Delaunay triangulation and a fast method for
its construction, following [45].

4.2. Definitions and Data Structures

The Delaunay triangulation can be (and historicaily
has been) defined in many ways. Currently one popular
definition is in terms of the Voronoi diagram. Suppose Z =
{z,;:j=1,2,.., N} is a set of N points in a set 2= R’; for
convenience we assume that £ has a polygonal boundary.
The Voronoi diagram of Z is the set of polygons P; defined
by

P={zeQ:|z—z|<|z—z| forall i#j}. (42)
Thus P; is the set of points in £2 which are closer to z; than
to any other point z, in Z. See Fig. 4 for an example. The
Voronoi diagram of Z is a uselul tool for identilying nearest
neighbors, because the nearest neighbors of z; are precisely
those points z, whose Voronoi polygons P, share an edge
with P;. The Voronoi diagram is used to solve closest point
problems in computational geometry, for precisely this
reason, in [9, 351

The dual of the Voronoi diagram is the Delaunay
triangulation, obtained by connecting two points with a
triangle edge iff their Voronoi polygons share an edge. In

FIG. 4. Voronoi diagram associated with a set of points.
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the exceptional case when four points of Z lie on a circle,
some edges of their Voronoi polygons have zero length,
and one can triangulate the cocircufar points in any non-
degenerate way, so the resulting Delaunay triangulation is
not unique. This possibility requires careful treatment,
because the Delaunay triangulation changes by passing
through such a case [48].

Another definition, which leads to our method of
construction, is through the circumcircle criterion; the
circumcircle of any triangle contains no other point of Z in
its interior. This determines the Delaunay triangulation up
to the nonuniqueness caused by cocircular points.

Before discussing the construction of the Delaunay
triangulation, we must specify how it is to be stored. We
store a triangulation by giving two integer arrays, i1tt and
itv, in addition to the two real arrays needed to store the
coordinates x, and y; of the points in Z. Let N, be the
number of triangles in the Delaunay triangulation. (By
Euler's formula, N,< 2N, which simplifies the assignment
of storage considerably.) Then & = itv{i, j) is the index of
the ith vertex z; of triangle T, fori=1to 3andj=1to N.
Also, k = it+t(i, j)is the index of the triangle T, which lies
across edge i of triangle 7. If edge i of triangle T} lies on the
convex hull of Z, we set itt(s j)=0. See Fig. 5 for an
example of itt and itv.

4.3. McLain’s Method

Next we describe an algorithm due to McLain [31],
which starts with a triangle belonging to the Delaunay
triangulation and adds triangies one at a time until done,
using the circumcircle criterion.

To construct the first triangle T, we choose a vertex, z,
say, at random from Z. Then the second vertex, say z,, is
chosen as a closest point to z;. The third vertex z, of T is

23 24
T
T T;
z3 5
B3
T,
26
H 1 2 3 4 J 1 2 3 4
itv(1,7012 1 1 1 ite{1,73 [0 3 4 0
ite{2,7)|1 4 & 6 itt(2,7)[2 0 0 @
ite(3,7) 13 3 4 5 ite(3,7) (0 1 2 3

FIG. 5. A small triangulation and the corresponding triangle to
triangle and vertex pointers itt and itv.
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chosen by the circumcircle criterion, applied to each side of
7,z This criterion says that we select the next vertex z; so
that (a} z, lies outside z;z; and (b} no other point of Z lies
in the interior of the circumcircle of the resulting triangle;
see Fig. 6. This means that z, minimizes the signed distance
t(z) of the circumcircle center from the line through z;
and z,,

(z—z)-(z—2)

20z—m)-n

tz)=

]

where z,, is the midpoint of z;z;, n is the unit normal to Z;z;,
and - is the dot product. Any minimizer of f(z) may be
chosen as the third vertex of T,.

We now have the first triangle T,. We store the indices
of z;, z;, and z, in the array itv(m, 1), and set
itt(m,n)=—1 initially for 1<m<3 and 1<n<2N
We also swap two vertices if necessary to orient z,z;z,
counterclockwise.

The triangulation is now built one triangle at a
time-—each triangle belongs to the final Delaunay triangula-
tion. We loop through the indices n of existing triangles,
adding a triangle (if possible) to each edge m of triangle »
which is not already occupied. It may be that it is impossible
to add a trianple to edge m, because there are no points of
Z outside the line extending that edge. In that case, we
mark m as an edge of the convex hull of Z by setting
itt(m, n)=0, and proceed to the next edge. If possible,
however, we find the third vertex of the new triangle by the
circumcircle criterion, as a minimizer of #(z) over Z. If the
minimizer is unique, it is taken as the third vertex of the new
triangle. Otherwise, there are four or more cocircular points
in Z; the two vertices of m and the minimizers of #(z). We
then triangulate all cocircular vertices in any nondegenerate
way.

We now add the new triangle to 1 tt and add its vertices
to the next empty location in itv. The new triangle may
also be a neighbor of some previously constructed triangle
which we have not yet accounted for, and if so the
appropriate entries must be made in 1tt,

Zi

F- -4-—t(z)—l- - 2= 2

Zj

FIG. 6. Geometry of McLain's method.
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We now proceed to the next edge and repeat. When we
run out of unoccupied edges, the Delaunay triangulation
will be complete.

4.4, A4 Uniform Cell Method

McLain’s method is robust and easy to program, but it
can be quite slow when N is large. To speed it up, we intro-
duce a cell structure and vertex-to-triangle pointers. Cells
were also used in [9, 30, 33] to speed up Voronot diagram
calculations. The basic idea is that only nearby vertices can
affect the addition of a new triangle, if the vertices are
reasonably uniform. Thus we can organize the vertices into
a spatial data structure [41] and search only nearby
vertices. The circumcircle criterion allows us to check
that we have included all the vertices which matter. Let C be
the circle produced by minimizing #(z) over a subset of Z.
Then no point outside C can be a global minimizer of #(z).
Thus any candidate for a new vertex excludes all vertices of
Z outside C.

There are two stages of the triangle addition process
which require O(N} work. First, we have to find the mini-
mizer of 1(z) over Z. Second, we have to check all previously
found triangles to find those sharing an edge with the new
triangle.

We reduce the cost of the minimization step by
organizing the vertices Z into a data structure according to
their spatial location. We first put Z in a rectangle C with
sides parallel to the coordinate axes. Then we subdivide C
into Ne= O(\/K/ )% O(\/K’ } rectangular cells and store
each z; in the cell where it lies. To do this, we use an array
icv of length N which contains the index of each vertex
and an array icvl of length N which contains, in its jth
location, the location in icv where storage for the vertices
in cell j begins. Thus the points z; in ceil i have their
indices j stored in icv between addresses icvl(i) and
icvl(i+ 1)— 1 inclusive; we set icvl{No+1)=N+1for
convenience. This data structure can be constructed in G(N)
work. An example is shown in Fig. 7.

Now we reduce the cost of minimizing 1(z) as follows. Say
we are finding minimizers of #(z} outside Z;Z;. Find the cells
i, and i, which contain z, and z; (usually {,=i,} and
construct the smallest rectangular union R of cells in the
cell structure which contains both i, and i,. Rather than
minimizing #(z) over all points, we now find only those
minimizers of #(z} which lie in R.

If R contains no points outside z;z;, we revert to
McLain’s procedure {or this edge. If there is a point in R on
the correct side of z;z;, then we will find a minimizer z, of
r{z) over Z n R. This point may not be the global minimizer,
because R may not contain the latter. But gny minimizer of
t(z) over all N points of Z will lie inside the circumcircle €
of z;z,z,. In practice, the minimizer of #(z) over R will be
the global minimizer almost all the time, if the point
distribution is reasonably uniform.
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. 25
.2y
Cy Cs Ce
«“ 2y
. 23
. 24
.23
. 2g
c-; CE CS
-
«Zig
.27
C, Cy Cr

i 1 2 3 4 5 6 7
jevi(d) |1 2 2 3 3 6 6 8 10 11

7 |1 2 3 4 56 7 8
iev(j) |7 5 2 3 8 9 10 4

FIG. 7. Ten points in a uniform cell data structure.

Hence if C < R, we have already found the minimizer of
#{z)} over Z. Otherwise, we expand R until it contains C and
search the new R. This produces all the global minimizers
of 1{z). )

If more than one minimizer is found, we must check
previous triangles to avoid degeneracy. The new triangle
can cross only triangles which have all three vertices on C.
To check these triangles efficiently, we need pointers from
the points of Z to triangles having them as vertices. This
requires 3N < 6N integer locations, but each point belongs
to six triangles only on the average. Hence the storage
method must allow for variations in the length of triangle
storage from point to point, and this structure must be
constructed simultaneously with the triangulation rather
than all at once.

This situation is ideal for the use of a linked list. This is a
single array ivt(i, j), where i=1to 2 and j=1 to 3N,
with the triangle indices for a given point stored in a chain
of non-contiguous locations, with each triangle index stored
in ivt(l, j)and ivt(2, j)} occupied by a pointer to the next
triangle index. To get started, a triangle T, to which z;
belongs is stored in ivt(1, j) for | € j< N;then ivi(2, /)
points to the location in 1ivt where the index of the fast tri-
angle (in order of creation) to which z, belongs is stored. If
this location is k and / = ivt (1, k) then T is the last triangle
to which z; belongs and ivt(2, &} is the location in ivt
where the next to last triangle index for z; is stored. The
storage proceeds backwards in this way until the end of the
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triangle list for the jth point is signaled by a —1in ivt(2, n)
for some n. We add a triangle to the list of z; simply by
resetting the end link ivt(2, j) and adding the triangle to
the next empty location at the end of iv+, See Fig. & for an
example of the iinked list.

Given this storage arrangement, we can easily look up all
triangles having z; as a vertex, check if all three vertices lie
on the circumcircle, and check for degeneracy if necessary.

The linked list also speeds up the second O(N) stage
of the triangle addition process; check all previously con-
structed triangles and find those sharing a common edge
with the new triangle, to add to itt. This is easy to
speed up, because ivt points from vertices to triangles
containing them; hence we can find all the desired triangles
timmediately in time proportional to their number and
independent of N.

Finally, we update the pointers and proceed to the next
edge of the growing triangulation. When there are no more
edges to be augmented, the triangulation is concluded.

4.5, An Adaptive Cell Method

The uniform ceil method is highly efficient when the
points are reasonably uniform. Unfortunately, in applica-
tions, we do not have uniform points. Even for interpolation
of a function, we want more data points where the function
varies more rapidly [37]. Practical situations often lead to
highly nonuniform point distributions, for which both
numerical experiments and theory indicate that the uniform
cell method requires close 1o its worst-case O{N?) time.
Even worse, the uniform method can be fooled simply by
adding a few outlying points at a large distance from the rest
of the points; it will then construct a cell structure which is
much too coarse, and the only remedy for this is adaptivity.

In this section, we present an adaptive cell method which
runs much faster than the uniform method on nonuniform
point distributions. The idea is to sort points into cells of

T

Zg
]
7 |1 2 3 4 5 6 7 8 94 10 {1 12
ivt(l,7)] 1 1 ¢ 2 3 4 2 2 3 3 4 4
[ivef2,j)[11 -1 8 10 12 -1 -1 -1 7 -1 9§ -1

FIG. 8. A small triangulation and the corresponding linked list of
vertex-to-triangle pointers.
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varying size, with no more than s points per cell. This is
done by recursively subdividing the rectangle C until no cell
contains more than s points.

At the end of the construction, we have partitioned C into
N subcells of varying sizes, as shown in Fig. 9 for a small
example with s = 3 and N = 22. For each cell i, we store {a)
data on its spatial location and (b) the indices j of the points
z;lying in cell i. Part (a) is achieved by storing three pointers
per cell, arranged in a 3x N array icxy(n f); L=
iecxy(3, i) is the level of i in the sense that cell /is 2~ times
smaller in each dimension than the original cell C. Two
more pointers #, = icxy(l, i) and n, = 1cxy(2, i) give the
spatial location of the cells, as if it were part of a regular grid
on C composed entirely of cells of level L; its lower left
corner is at the point (x=a.+n,-h,, y=a,+n, h,). Here
C=la,, b.]x[a,, b, ] while the sides of / have iengths
h,=2""b,—a) and h,=2"%b,—a,). respectively.
Part (b) is achieved by storing a list icv of points lying in
each cell. Additional pointers icvl and icv2 give the
addresses in icv of the beginning and end of the list
of points in cell i Thus cell i contains (x;, y,), where
J=dcv(k)fork=1icvl(i), .. icvE(i).

The ceils are sorted lexicographically within each level,
and arranged by level. Thus we use also pointers i1c1 such
that all the cells on level L are given by i=1ilcl(L),
ilel(L)+1, .., ilel{L+1)—1. The purpose of lexico-
graphic ordering on cach level is to speed up the operation
of searching for a cell with given values of n,, n,, and L;
we simply carry out a binary search of icxy(1, /) and
icxy(2,7§) for i between ilc1(L) and ilcl(L+1)—1.
This operation is important when we construct the list of
neighbors of a given cell or when we find all cells which
intersect a given geometric object. This data structure is
similar to that used in [12, 49].

Next we describe the construction of the adaptive cell

F1G. 9. Adaptive cell structure with no more than three peints per cell.
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structure. We begin with the rectangle C.and subdivide it
into four cells by bisecting each coordinate. We assign each
point z, to the cell in which it lies. These cells constitute level
1 of the structure. To construct level 2, we run through cells
created at level 1 an/d—Bisect any which contain more than s
points, reassigning points to the subcells in which they lie.
The resuiting cells are added to the end of icxy, icv,
icvl, and icvZ in the order in which they were formed.
Cells which are subdivided are marked for deletion, and
when the level 2 cells have all been created, the subdivided
celis from level 1 are deleted and storage is reassigned. Thus
empty cells are kept but subdivided cells are eliminated; the
result is a partition of C into cells with disjoint interiors.
After deletion, pointers i1lel are made. The algorithm now
proceeds recursively one level at a time. At each level, the
cells created in the previous level are subdivided where
necessary, and the new cells assigned numbers icxy and
storage in icvl and icvZ2. Subdivided cells are deleted and
storage moved up.

When this process terminates, either because the maxi-
mum number of levels is reached or because no cell has
more than s points in it, the cells on each level are sorted
and rearranged in lexicographic order. Finally we make
pointers ive from points to cells, showing which cell a
point lies in, and we are done.

We need to carry out two primitive operations on this
data structure. First, we have to find the nearest neighbor
cells of a given cell 4, all cells having a point in common with
i. 1f all the cells were the same size, the spatial location num-
bers of the desired cells would be obtained from icxy(n, i)
by adding 0, —1, or +! to icxy(l,i) and icxy(2,i). A
secarch through the ceils on level L= icxy(3,i) would
produce them. The cells are not all the same size, so we must
look on all 1evels for neighbors,

For example, suppose we are looking for the lower left
corner neighbor of i, We begin on the same level as i by set-
ting n,=1icxy(l,i)— ! and n,=icxy(2,i)— 1. These are
the values icxy(1, j) and icxy(2, j} would have if a cell §
of the same size as i occupied the lower left corner position.
Thus we search through cells on level L=1cxy(3,{) for a
cell with numbers n, and s . If the search succeeds, we are
done. If it fails, we must lock for a larger or smaller cell. A
larger cell is easier to find in general, so weset n, — | 1, /2 |,
n,+|n,/2]and L« L—1, and search level L for the cell
{n., n,). This procedure is repeated until either we find the
cell or we reach the top level. If the latter occurs, we need a
smaller cell. The corners and sides differ here because on the
corners we are looking for a single cell, while on the sides we
are looking for several smaller cells. On the lower left
corner, for example, we seek a smaller cell by putting
n,«2-n.+1,n«<2.n.+1, L« L+1, and searching on
level L, then repeating this procedure as needed until the cell
is found.

On the sides, the search for smaller neighbors is slightly
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more complicated. We begin, say on the left side, with
n.+«n,—landn,en. If no cell on level L with numbers
(n,, n,) exist, then we look for smaller neighbors, possibly
several of them. First, we subdivide (n,, 7,) into four cells
and stack the right-hand two cells. The left two cells are dis-
carded. We now run through the stack, searching for each
cell on the level where it should exist. If found, it is added to
the neighbor list and we continue with the next stack entry.
Il no such cell exists, 1t is subdivided, the right-hand two
cells are stacked, and the left-hand ones discarded, and we
continue with the next stack entry. When this process
terminates, we have the list of neighbors,

Another operation we need to carry out with this data
structure is to find all cells which intersect a given geometri-
cal object 2 such as a square or the intersection of a circle
with a half-space. A fast method uses recursion: Stack the
four top-level cells. Examine each for existence and intersec-
tion; if it exists and intersects 2 it is added to our list, if it
does not intersect it is discarded, and if it does not exist but
intersects, then it is subdivided, its subcells are stacked, and
we proceed.

An adaptive cell method for Delaunay triangulation is
now a straightforward extension of the uniform method.
Only the search strategy changes, as follows.

The first step is to search the ceil or the two cells con-
taining the vertices z; and z; of the current edge. If z,
minimizes ((z) over this search area, we compute the
circumcircle of z,z,z, and test whether it is contained in the
search area. If it is, we have found the global minimizer and
can proceed. Otherwise, we must enlarge the search area,

Our next step is then to find the nearest neighbor cells of
the one or two cells of the first search area and take their
union as the second search area. We expect a single layer of
nearest neighbors to be sufficient in most cases because they
will “screen” the current edge from further points. The
second search can again have three outcomes. First suppose
no point has yet been found when the second search ter-
minates. Then it is quite likely but not certain that Z;z; is on
the boundary of the convex hull of Z; thus we find all celis
intersecting the half-space outside 7;Z; and take their union
as the third search area. If, on the other hand, we have a
locai minimizer z,, let C be the circumcircle of z,, z; and z,.
If the interior of C is contained in the second search area, we
have found the global minimizer and can proceed.

Otherwise, we must enlarge our scope to the third and
final search area, comprising all cells which intersect C.
After searching the third search area, we have either found

all global minimizers of #(z) which lie outside Z;z;, or
determined that Z;Z; lies on the boundary of the convex hull
of Z, and can proceed.

A considerable speedup is obtained by precomputing all
neighbors of nonempty cells and storing them. This
climinates the necessity of repeatedly finding the neighbors
of cells, a considerable savings when s is large.
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4.6. Numerical Results

We have implemented the three algorithms described in
this section in Fortran and tested their performance on
many sets of data points. Results from only one set of test
data will be reported here. The data consists of four sets of
N/4 normally distributed points, centered at four points in
[0, 1] and with variances given by ¢ =0.15, 0.15/7, 0.15/7%,
0.15/7%. An example with N = 800 is shown in Fig. 10, where
the fourth set of points is inside the third set and therefore
invisible.

Table T reports the results of triangulating this set of data
points, with N ranging from 100 to 51,200, The column
headings have the following meanings;

N is the number of data points.

N, is the number of triangles produced.

T, is the CPU time in seconds required by our implemen-
tation of McLain's method, estimated by extrapolation for
N = 10,000.

T, is the CPU time required by the uniform cell method,
with No= (L\/J\—IJ)Z cells, estimated by extrapolation for
N> 20,000,

T, 1s the CPU time required by the adaptive cell method,
using s = 25.
N ~1s the number of cells created by the adaptive method.

C,=10*.T,/Nlog N is the scaled CPU time constant
for the adaptive method.

L is the highest level used in construction of the adaptive
cell structure.

FIG. 10. Sample Delaunay triangulation of & =800 nonuniform points.
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TABLEI

ey
Timings for Constricting the Delaunay Triangulation of N
Nonuniformly Distributed-Roints, Using the Quadratic, Uniform,
and Adaptive Cell Methods b

N T, T, T, Cr No L
100 0.14 0.11 020 43 )’ 3
200 0.54 0.32 044 42 40 10
400 21 L1 097 40 58 10
800 83 19 21 39 109 1

1600 38 13.3 44 37 178 12
3200 136 st 92 36 319 13
6400 566 198 19.6 35 583 14

12800 2267* 779 41 34 1144 14

25600  9068* 3118* 82 32 2275 15

51200 36274* 12475% 169 31 4426 16

Note. Asterisks denote timings obtained by extrapolation for the
quadratic and uniform methods.

We can draw the following conclusions from this table;
first, both the uniform and adaptive methods are faster than
the quadratic method as soon as N 2 200. Thus they are to
be preferred for large problems if sufficient memory is
available. The uniform method requires about 26N integer
memory in addition to 2N real storage for x and y; about
12N of the integer storage is used just to store the triangula-
tion. Thus the uniform method uses only about twice the
minimum amount of memory. The adaptive method typi-
cally has similar storage requirements, despite the larger
amount of information it stores, because we take bigger cells
and hence have fewer of them. It is difficult to give a tight
upper bound for its memory usage, especially when the
number of points per cell 1s chosen very small. However, on
this example, with neighbor lists stored, it required about
4N additional integer locations for large N.

Second, on these nonuniformly distributed points, the
uniform method runs quickly when N is small, but
degenerates to O(N?) performance when N becomes large.
This is to be expected. The adaptive method, on the other
hand, displays a gratilyingly regular Q(N log N) perfor-
mance throughout the whole range of N. It beats the
uniform method consistently when N >=>400, and out-
performs the quadratic method as scon as N2 200. The
constancy (and even slight decrease) of C, indicates that the
adaptive cell method is O(N log N) or better, even on these
extremely nonuniform point distributions.

5. FAST VELOCITY EVALUATION

We now consider the most expensive part of our method,
the velocity evaluation. Given o piecewise linear on the
triangulation 7, we need to evaluate the velocity

u(z)=j K(z—72') f(z') sz’ (5.1)
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at each vertex z; of 47, Here we omit a constant factor and
ignore conjugation for simplicity, so K(z)=1/z, and we
integrate over &, the support of w, with respect 1o
dz’ =dx" dy".

Directly evaluating u at the N vertices of F via (2.12)
costs O{N?) work with a large constant. We now present a
fast algorithm which requires O(N*” log ) time to evaluate
N values of # within an error tolerance &, when & is quasi-
uniform (when there are upper and lower bounds propor-
tional to N on the number of triangles in any fixed area).
Our algorithm is based on the fast multipole method [127,
but differs in forming moments of a continuous source
rather than point charges.

5.1. Splitting

Our first step is to split the velocity » at each vertex into
local and far-field parts u, and u,. To do this, let C; be a
rectangle 7 and divide C, into N~ square cells C of equal
side length, say 2h. Fix a vertex z=z;. Then

uz)=Y [ Kz—z)olz) dz
c <

=1, (z) +uplz), (5.2)

where u; is the sum of those terms due to cells C within ¢
cefls of z, and u - 1s the remainder (see Fig. 11). Thus

uez)= Y L Kiz-Yolz)d, (53)

d(z. CYy>(2r + 1) A

where the distance from a cell C (with center ¢) to the point
z i defined by

d(z, C)=max{|R(z—o)i, |13z — )|} (54)

Note that w(z') is piecewise linear on the triangulation
F; thus the integral over each cell C is a sum of integrals

Near Field

Far Field

(2r+1) 22

FI1G. 11. Celis and centers for fast velocity evaluation, with r=1.
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over subtriangles of triangles intersecting C. The most
efficient way to evaluate these integrals is to carry out a
preliminary step in which the triangulation is refined
wherever necessary to make each triangle lic completely
within a single cell C. This refinement is implemented recur-
sively; we stack all triangies, then cut each one which crosses
a cell boundary and put the resulting pair of triangles back
on the stack. When the stack is exhausted, no triangle
crosses a cell boundary.

5.2. Laurent Expansion of uy

Now consider the far-field. Let C be a given ceil {with
center ¢) contributing to the far-field velocity evaluated at
point z. Then for each 2’ € C, we can expand K aboutcina
Laurent series;

{(5.5)

1 E(z'—c)”
TzocZ \z-c)
How well does this serics converge? By clementary
geometry, we have
/2
=

Sy

Z'—c

p. (5.6)

Z—C

{Typically r = 1 and p = 0.4714.) Hence the error (relative to
1/(z —¢)) in truncating the Laurent series of K after the pth
term is bounded by

p+1

E,= =

]

s ' —c\" “

£ (=)
n=p+1 i—c
since p<3. If r=1, for example, we can guarantee that
E, < 10~% with p ~ 3k since p* < 0.105. In any case, we now
assume an error tolerance ¢ has been specified, and 1, A, and
p are chosen to make E <&

Then we have, within error & |w|, = ¢ | |,

21 /=N
up(z)= Z 2 ( C) w(z') dz’

<p*f (5.7

Az Cymi2r+ )k “Cu=oZ ~CNZ—C

Z C,,(Z‘—C)Hnil,

= 2 (5.8)
iz, Cy={2r+ 1Y h n=0
where the coefficients C,, for cell C are defined by
Co={ (Z—ey () dz (59)
C

Since w is piecewise linear and we subdivided the triangula-
tion where necessary to make it compatible with the cell
structure, we have

C,= Z T,

T=C

{5.10)
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where
(5.11)

T, =j (z'—c)' w(z')dz
T

is the moment of a linear function over a single triangle 7.
Clearly we need only evaluate the modified moments,

T’f’=j GO at e dy, (5.12)
[ r H!

where o + fI < 1, and we have added a factor of n! to simplily
later formulas.
Let us write z — ¢ = ax + by — ¢ for the time being, where

a and b are arbitrary. Then after evaluating 7%, we can
obtain the rest by differentiation:
N [ aN
TY={=) (=) T® .. 13
# (aa) (ab) EE-E (5 )

To evaluate 7%, we appiy the divergence theorem to obtain

00:[ V. Faxdy={ Fovs (5.14)
T ar
Here
Z" V V 7n+l Zr;+l
—=V.F=V.|—/— 0=V [0, ———— 515
n! (a(n+1)! ) ( b(n+1)!) (3.15)
and

vds=(dy,, ~4x,) db, 0o, (5.16)

if z, =x, +iy, are the three vertices of T. Here 4 is the
forward diflference operator Ay, = £, , , — fi with respect to
the index k=1, 2, 3 and we put z, = z,. It follows that

ooy A (A 5.17

" —,Z‘,adzk ((n+2)‘) (5.17)
3 —Adx, zh+?

= A ; 5.18

kgl b Az, ((_n+2)!> { )

To simplify the calculation of T'!¥ and T9', we differen-
tiate {5.17) with respect to # and (5 18) with respect to a.

Finally, we set =1 and = to obtain

o Ly AE (T 5.19
T"‘EZZZ ((n+2)) (519)
3 (Ax)? Zn+3 dx, [ xpzi*t?
=iy e o= ()
=L Ty Ny Tz N\
(5.20)
Ay,

R 3 (A}’k)2 Z:-”
T"l=,§. - (Azk)z"((n+3)!)+

p (ykZGZ* _
(n+2)!

(5.21)

Az,
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Note as a check that 7)°+/T%" = (n+1) T . Note also
that this calculation works for any polygon, not just a
triangle.

5.3. An O(N*?log &) Algorithm

Separation of local interactions from the far-field and
Laurent expansion of the latter leads already to algorithms
which cost O(N*?log &) time with N quasi-uniformly dis-
tributed triangles and an error tolerance & To construct
such an algonthm, divide 7 into N, cells C of side length
2h, each containing O(N/N_.) triangles (we can ignore
preliminary subdivision as it only affects the constant) and
choose parameters r and p= O(loge) to make £, <& The
number N, will be chosen later to achieve maximal
efficiency. Then evaluate u,(z,), for each vertex z;, directly
in O(N/N /) time per vertex or O(N?/N ) total time. For the
far-field, form Laurent coeflicients for each cell in O(pAN)
time (since each triangle contributes to p coefficients) and
evaluate O(N-) p-term Laurent series at N points in
O(pNN ) time. Choosing N - = O(N *?} minimizes the total
time which is then G(N*?p), where p = O(log ¢). Thus this
gives an O(N*?loge) algorithm with N quasi-uniformly
distributed triangles.

54. An O(N*? log &) Algorithm

We next add a further observation which reduces the time
to O(N*3loge) with' N quasi-uniformly distributed tri-
angles. The observation is that the far-field is smooth, hence
well approximated by a Taylor series in each cell. The
Taylor series can be computed by summing over the far-
field contributions from each far-field cell, then evaluated
once and for all at each vertex. This further decoupling of
sources from points of evaluation leads to an O(N*? log &)
algorithm,

Thus consider a cell B, with center b, containing triangle
vertices z;, where we wish to evaluate u,(z). Each term in
each Laurent scries has a Taylor expansion

1 il .
PR ZD(":") (b—c) ™" (=2 (522)

2=

about the cell center 4. Thus,

=Y B, (b—z)" (5.23)
m=0
where the Taylor coeflicient B,, in cell B is given by
" —n—1 C’i'
= Z(b—c) Z (n+m)t (b~ c) . (5.24)
n=0 .



FAST TRIANGULATED VORTEX METHODS 303

The error in truncating the Taylor series after p terms is  for large N, and one which makes the algorithm

bounded by O(N log N log ¢) for large M.
- First and most trivially, empty cells containing zero
E=| Y B,(b—2)" (5.25) vorticity should be ignored in forming moments, and the
m=p+1 powers of vertices required to form and transform the
@ moments should be precomputed and stored.

< X 2ol 2r+Day ! (\/Eh)m (5.26) Somewhat less trivially, we observe that the far-field

mEpt becomes smoother at longer distances. Thus more distant

lwl; ceils need to contribute to fewer terms in Laurent or Taylor
ey (3.27) .

(r+1)h series. If we need p, terms for the nearest far-field cells to

obtin the error ¢, then a cell at distance (2ih, 2 i) from the
with p=1 /(\/5 (r+ 1}). Cleariy this can be made <¢ by evaluation cell only needs to contribute to p coefficients,
choice of p once r and 4 are fixed, and p = O(log ¢). where

This transformation leads to an O(N** log ¢) algorithm log((2r + 1) 1212)

as follows. As before, we divide T into N, cells each with =D - 3 : ™Iy
O(N/N¢) triangles. The local part costs O(N?*/N.) as logt{(2i — 1)+ {2/ = 1)) Ir/2)
before. The far-field part costs O( pN) to form Laurent coef-
ficients, O(N 7. p*} to convert Laurent to Taylor series, and
O(Np) to evaluate Taylor series. Hence N~ = O(N *?) gives
the minimum time and it is O(N *? log &).

(5.28)

This refinement usually speeds up large computations by a
factor of 2.

Another refinement concerns the preliminary subdivision
of triangles to make them lie precisely in cells. Clearly we
want to cut as few triangles as possible, since the cost of the
local part increases with the number of triangles. Also, it is

There are three or four refinements to the final algorithm  not necessary to have triangles completely contained in cells
which collectively produce a factor of three or four speedup  if they are nearly contained. Thus we specify a distance ¢ by

5.5. Refinements
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FIG. 12. The original and (aliernate cells of the) subdivided triangulation with N =500 and ¢ = 0.02, 0.08, and 0.32. The subdivided triangulations
have 1146, 750, and 507 vertices, respectively.
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which a triangle may extend outside a cell boundary, so a
triangle must go 2gk outside to be cut. Typical cut tri-
angulations for various values of g are shown in Fig. 12. The
error bounds will be affected by g since the far-field can
come nearer, but in practice even such large values as
g =0.32 produce little or no change in the error. This is
because most triangles are far away, where ¢ is irrelevant.
The CPU time, however, can be drastically reduced by
taking ¢ large, because many fewer local interactions need
to be computed. For example, the numbeér of triangles is
cut in half by taking ¢ =0.32 instead of ¢ =0.02, with no
increase in the error. This leads to a factor of 2 speedup in
the local interactions.

The algorithm requires a choice of cell size, and its speed
depends on the choice. Such a parameter is difficult to
estimate a priori; cells too small require too many subdivi-
sions and too many Laurent-Taylor conversions, while cells
too large require too much local work. The real remedy for
this is adaptivity, as used in our Delaunay triangulation
method or [12,497, but this complicates the handling of
Taylor expansions. We implemented instead a simple
method for choosing cell sizes, based on minimizing the
CPU time at each step. We keep an increment i= + 1, and
do n,.« n,+iat each step, where n is the number of cells
in the x-direction. The number of cells in the y-direction is
chosen to keep the ceils approximately square. The incre-
ment i changes sign whenever the CPU time required for the
current fast velocity evaluation exceeds the CPU time
required for the last one. This choice of parameter keeps us
within one cell of a local minimum of CPU time, even if we
start the computation with the wrong number of cells. It
also adapts automatically to odd-shaped distributions of
vorticity.

We also observe that the algorithm can easily be made to
run in { N log VN loge) time on quasi-uniform triangula-
tions. To do this, we simply observe that the formula (5.24)
which converts Laurent to Taylor coefficients at a cost of
O(NZp?) is a correlation which can be computed in
ON-log Neplog py with the FFT. Then choosing
No=0O(N} gives an O(N fog N log £) algonthm. However,
we believe the overhead of this approach would be large
enough that little speedup would result in practical
problems; hence we have not implemented it. It would be
important in three-dimensional problems.

Finaily, the restriction to quasi-uniform triangulations
can be removed by making the algorithm adaptive, exactly
as in [127]. In our computations, however, we did not
implement an adaptive method because of its complexity.

5.6. Numerical Results

We now present numerical results which show that our
algorithm achieves considerable speedups over direct
evaluation. Table Il gives the results of fast and direct
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TABLE II

Timings for Fast and Direct Velocity Evaluation Methods
with N, Triangles

N N T, T, 1007, /N3 E, Ne Ny
100 - 183 231 236 051 048 x 10-¢ 4 243
200 378 9.63 4.88 042 0.72x10"% 6 493
400 773 39.5 109 037 O011x10"% 9 1053
800 1566 161 243 033 090x10-% 12 2020
1600 3161 658 55.5 030 048x10-% 15 3840
3200 6352 2655 122 026 054x107% 20 7377
6400 12744 10683 271 023 077x107% 27 14405
12800 25529 42732+ 627 021 014x10-° 34 27576
25600 51115 170928* 1453 019  092x10-° 45 54197
51200 102295 683712* 3431 018  093x10-% 59 106686
Note.  Asterisks denote timings obtained by extrapolation for the direct

method.

velocity evaluations for uniformly distributed random
vortices in [ —1, 1]? with random w values uniformiy dis-
tributed on [ —1, 1]. We take g =0.2 and £=10"7, which
requires p = 10 with r = 1. The other numerical parameters
are given in the table along with the times 7', and T for
direct and fast evaluation and the maximum relative error
E,in fast evaluation. Here N is the number of vertices, N
the number of triangles, and N is the number of triangles
after the subdivision of the triangulation required to put
each triangles within ¢ of lying in a single cell.

We observe that the fast method breaks even for about
N=100 and achieves a speedup of about 200 when
N=251200. For N = 1000, we obtain a tenfold speedup. The
fast velocity evaluation is slightly faster than O(N*?) in
practice, and the error is much smaller than the error
bound.

6. INITIAL TRIANGULATION

We must address one more computational issue, in order
to have a robust method: where do we put the vertices
initially? Say we are given an initial vorticity field: smooth,
discontinuous, or worse. Then we should place the vertices
z; to minimize the error in representing o by a piecewise
linear function on the Delaunay triangulation of the
vertices. To do this, we use adaptive refinement of a coarse
initial triangulation.

Thus we begin with a uniform square mesh covering the
support of w, and cut each square into a pair of isosceles
right triangles. This is our coarse initial triangulation, which
we now refine as follows. We put all the triangles on a stack
and sweep through the stack, testing whether each triangle
needs to be subdivided. To test a triangle, we first evaluate
@ at the node which would be produced by subdividing the
triangle. We also evaluate the linear interpolant at the same
node, and compute the difference between the two values. If
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@ is within a tolerance & {relative 1o the maximum value of
 so far encountered) of the interpolant at the new node, the
triangle is accepted. Otherwise, the triangle is subdivided by
Mitchell’s newest-node bisection method [32], maintaining
compatibility by subdividing neighbors as necessary, and
the new triangies are stacked. We then repeat the procedure
with the next triangle in the stack, until the stack is finished.
Using the maximum value of |w| so far encountered
produces a triangulation on which the error is likely to be
smaller than ¢ |w| ., rather than larger, although of course
any method can be fooled into accepting a substandard
triangle with errors which are actuatly too large.

Mitchell’s subdivision procedure begins by assigning one
vertex of each triangle in the initiai triangulation as a
“peak,” and the side opposite the peak as the base. (In our
case, the initial triangulation consists of isosceles right tri-
angles and the peak is the vertex at the right angle, opposite
the hypotenuse.) Then it subdivides triangles by dividing the
base and the neighboring triangle opposite the peak, with
the new vertex being assigned as the peak of each of the four
new triangles created by the subdivision. Compatibility is
maintained by aiways subdividing compatible pairs of tri-
angles; if the neighbor opposite the peak is not compatibly

e
T, Ty
Ta

FIG. 13, An example of Mitchell’s recursive newest-node bisection.
Triangle 7, is flagged for subdivision, but the peak (circle) of its neighbor
T, does not lie opposite T, . Hence we must refine T, and its neighbor 7.
Similarly, the peak of T, does not li¢ opposite T, so we must refine 7, and
T;. The peak of T, lies opposite T, s0 the recursion stops here. We then
divide triangles backwards in pairs as shown in (b} through (d), until we
have divided T;. The final triangulation is shown in (d}.
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subdivisible, it is itself divided recursively untit com-
patibility 1s maintained; see Fig. 13. Because we begin with
isosceles right triangles, the recursion is always finite, The
fact that we subdivide triangles compatibly gives a slight
safety factor, because even if a triangle is wrongly accepted,
it will still be subdivided if one of its neighbors with a peak
opposite it is subdivided.

7. NUMERICAL RESULTS

In this section we present numerical results that show the
accuracy, efficiency, and robustness of the method. Our
results show that the method maintains its accuracy for very
long periods of time, on simple and complex test cases. It is
flexible and robust and can compute even discontinuous
solutions, with no numerical parameters except the resclu-
tion and time step, and with little numerical diffusion.

First, we discuss the norms and conserved quantities that
we plan to measure. There are six reasonable quantities to
measure, the L', L?, and L™ errors in the velocity and the
vorticity, and for smooth solutions the results are essentially
independent of the choice of norm. Since we present numert-
cal results with nonsmooth, as well as smooth, vorticity
fields, we prefer the errors in velocity, a smoother quantity
and a primitive variable with direct physical meaning. The
error in velocity is appropriate for comparing our method
to other methods, since the representation of the vorticity in
other methods is quite different. The L™ norm seems more
appropriate than L' or L7, since the velocity field of a single
vortex-biobis not in L' or L7 so these norms depend on the
support of the grid, and not only on A, even if the vorticity
has compact support. Thus our main measure of error is the
relative L™ norm of the velocity error,

_max_ |u(z, 1) —u,(z, 1)|
‘T max._ |u(z, {)]

7

where u is the exact and w, is the computed velocity field.
The maximum over z is approximated by the larger of the
maximum over the vertices and the maximum error in the
linear interpolant of 1, at one random point per triangle.

There are also two useful conserved quantities which we
check, the circulation

F:zj’ w(z, tydz (71N
j=
and the second moment of the vorticity
Aﬁ:fl#w@ﬂﬂ. (7.2)
[+

Conservation of circulation follows from conservation of
vorlicity along the streamlines:

kmmn@=kwmgmﬂﬂ=hfmmﬁ



306

The Jacobian |3z/0{| = 1 because the flow is incompressible.
To show that the second moment is conserved, we
differentiate it to obtain

M, =J |z|2 w,(z, 1) dz

[=2]

=_j 212 u - Ver(z, 1) dz

R2

=—J |z} V - (o) dz
R

=-J V-(Izlzwu)dz%-f wu -V z|? dz.
R? w?

The first integral vanishes if «» decays fast enough at infinity.
The second integral becomes

f -V 2| dz
Rl
=2J‘R2wu-zdz
=2J w(z)z-f Kiz—Z)w(z'yd: dz
RE 122
=2j j o) o(z') K(z—2') - (z— '+ 2') d=' dz
Y@
=2j J o(z2) (') K(z—2') (z — 'y d2’ dz — M.
m? JR2
Therefore

M3=I _[ w(z)w(zVK(z—2')-(z—2)d2" dz=0

R Y R2

since K(z) -z =0. The second moment is a good measure of
numerical diffusion.

7.1. Comparison with Vortex-Bloh Methods

In a vortex—blob method the velocity field is computed
using (2.11). The convergence properties of such a method
depend on the blob function. Several convergence results for
vortex—blob methods are given in [ 17]. Here we briefly recall
some of the main results, Let u(z, 1) be the exact velocity
field at position z and time 1, and u,, ;(z, 1) the velocity field
produced by a vortex—blob method of grid size # and blob
size 8. The discrete L’ error, or “consistency error,” is
defined by

172
exr) = {Z llz,, t) —wy 5z, )] "12} ,
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where z,(¢) is the exact position of the /th particle of fluid at
time £. Tt can be shown that, for a finite time interval T and
for smooth initial conditions, the following estimate holds:

I3
max eg(r)sC(é”—f—(ﬁ) 6).
o< T o

Here the constant C depends on the initial condition and on
T, and the constants p and L are determined by the blob
function. For Gaussian blob functions, L= o0, so with
d = h¥ the error estimate becomes

max e,(!y< Ch™,

0<rgT

where p is the order of the blob function. In theory it is
possible to obtain an arbitrarily high order of convergence
by choosing p large and ¢ close to one. Experience shows,
however, that for p large and ¢ close to one there is a
considerable loss of accuracy after a short time. We used
the Gaussian blob function of order p =4 [34]

g(r):l(Ze_’z—%e_’zﬁ),

e

where r=|zl,
As a test problem we consider Perlman’s test case [34]
with vorticity

(1—1z?,  jal <1
= 7.
w(z) {0, 2> 1 (7.3)
The corresponding velocity field is given by
wiz) = 10z ) (14)
where
——1—(]—{]—r2)3) r<l
16r2 ’ =
fin=4¢
—— 1
16r%’ s

The flow is radially symmetric and rotates about the origin.
The particles near the origin complete one rotation at time
¢ = 4m, while the particles on |z| = 1 complete one rotation
at r=32m,

At time ¢ =0 we place the particles on a regular square
grid of size 1=10.4, 0.2, 0.1, or 0.05, inside a circle of radius
R =12, and set ,= w(z,), where o is defined by (7.3). The
system of ODEs

Z‘!= ué(zn t]
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FIG. 15. Comparisen with vortex-blob methods; relative L™ velocity, circulation, and moment errors (left to right) versus time {first row) and the

corresponding time-averaged errors versus SPARC-2 CPU time (second row) for our method. The four runs plotted used the following parameters: mesh
sizes h =04, (0.2, 0.2, and 0.1; N =29, 113, 441, and 1793 vertices; n = 64, 96, 128, and 192 time steps.

circulation and second moment:; with #=0.05 the second
moment errors are less than 0.4% up to r=32z. In view of
the extension of the method to the Navier—Stokes equa-
tions, we use this to estimate the minimum viscosity that is
possible to treat with such a method for a given grid
parameter £ For the Navier-Stokes equations

@, +u-Vo=vAw,

the second moment of Perlman’s test case evolves according
to

Ma(t) = My(0) + dvi,
Since M,(0)= /72,

My(1) = M,(0) 288w
M,(0) T ooz

M, =

At t=32n, m,=9216v. An error of 0.4% corresponds to
v=8x 1077, a fairly small viscosity. This suggests that our
method can be combined with the method of [40] to solve

the Navier-Stokes equations for small Reynolds number
flows. Note, however, that we do not observe a linear
growth of error with time. Rather, the second moment is
roughly constant, suggesting that our method may be even
less diffusive than this simple estimate would imply.

7.2. Reconnection versus Fixed Topology

We next reproduce the results presented in [13] and
compare them with those produced with our method, for
Perlman’s test case (7.3). The initial triangulation was
produced by the MODULEF library of finite element codes
[10], with =4, 1, 5, &%, and 3. The system of ODEs is
integrated by a Runge-Kutta method of order 2, with
At=mn/8. For each value of # we make two runs. In the first
we keep the topology of the triangulation unchanged and
evaluate the velocity directly, as in [137. In the second run
we construct a Delaunay triangulation at each time step,
using the adaptive cell technique of Section 4, and we use
the fast velocity evaluation of Section 5. Figure 16 compares
the triangulations in the two cases, for A= and =0, 2x,
4r, and also shows the Delaunay triangulation for later
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times 7 = 8x, 16w, 32xn. Clearly without reconnection the grid
becomes very distorted and degenerates after a certain time,
when triangles with negative area form, while the Delaunay
triangulation remains regular for long times. Figure 17
shows the velocity and moment errors as a function of time
up to 7'=8xn. The distortion of the fixed grid causes a
dramatic increase in the error, while with a Delaunay
triangulation the error remains small, The time-averaged
errors versus CPU times are reported in Fig, 18. It is clear
that the fast velocity evaluation method is essential for
attatning small errors in reasonable computation times.

7.3. The Adaptive Method

We now test our method on Perlman’s test case, without
the handicap of a uniform initial grid. We first fix a grid
refinement tolerance ¢ = 0.064 and halve the time step until
the first two digits of the errors do not change for
0 < 1 < 32n, using fourth-order Runge—Kutta. This gives us
a time step At = n/2 which makes time discretization errors
negligible in comparison with spatial discretization errors
for this &. Then we run three more cases, with £=0.016,
0.004, and 0.001, reducing 4t each time. Figure 19 displays
the resulting triangulations at =0, r=4n, and r=32n.
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Figure 20 plots the errors against time and CPU time; they
remain uniformly smail over time and decrease very rapidly
with increasing computational effort.

714. Kirchhoff s Elliptical Vortex

We now turn to a more challenging test case, a patch of
piecewise constant vorticity. An exact circular patch of
constant vorlicity is easy to construct, but shares with
Periman’s test case an unrealistic radial symmetry. We use
a more interesting test case, the Kirchhoff elliptical vortex,
a uniformly rotating elliptical patch of constant vorticity
with exact velocity ficld given in Appendix A. The Kirchhoff
vortex is of considerable physical interest [7], as well as
numerically useful.

Resolving the elliptical vortex with an adaptive grid
requires that we vary the number L of refinement levels
allowed together with the tolerance & We take ¢£=10.064,
0.016, 0.004, and 0.001, with L =8, 10, 12, and 14 levels of
refinement of an initial uniform grid with 4 =0.48, and
n=232 48, 64, and 96 time steps, using fourth-order
Runge-Kutta.

Figure 21 shows the vorticity ficld at r =0, T/4, and 772,
where T'=9n=28.274334 is the rotational period of the

VAYAVAY,
SN
AASOLAAEAN
ANAYAVAY VAVAVAVAYAVA)

A'A"‘v‘ e‘b
VAYA) AN
sy
RIS

FIG. 16, Fixed (top row) and Delaunay (second row) iriangulations at times 1 =0, 27, and 4= (left to right), and Delaunay triangulations at ater

fimes ¢ = 8z, 16n, and 32n (last row).



310

RUSSO AND STRAIN

0.0 0.0 0.0
Z 201 20f = 20f
g _— @
® 5 E
4 K] ] |
z 401 & 4.0[ £ -4.0
= — T =4 3 T
8 ﬁw/v £ <1
¢ 60 e @ 6.0
- w
5 ARSI R E
§  eof 8 5 801
4 I =
E T ——— g &
S -00F - 2 -100[]
- —
7 , ‘ ‘ J 120 WL 12,0 ; . ' '
200 50 101 151 201 25.1 20067 50 101 151 201 251 00 50 101 151 201 251
Time Time Time
0.0 0.0 0.0
= 2.0 - =
z 2.0 @ g
b = £
S 2 g
- -4.0r = -4.0 £
€ g £
T 60F e 60 2
g 5 £
E = =
% 801 % -8.0 g
E 2 g
®  -007 - 100 @
= -
1 1 Il 1 I3 L L] L] 1 1 1 H
-12. -12.0 126
2800 50 101 151 204 25 00 50 101 151 201 251 00 50 101 151 201 251
Time Time Time

FIG. 17, Comparison between fixed topology and Delaunay triangulation with A=, &, 45, &, 2. First row: Relative L™ error in velocity, circulation
errors and second moment errors versus time for Delaunay triangulation. Second row: the same quantities for fixed topology.

Kirchhoff ellipse with aspect ratio 2, and strength 1. The
vorticity field is plotted by giving each triangle a gray-scale
value equal to @/|w|,,, where @ is the average over the
triangle, 0 is lightest and 1 is darkest. In the more accurate
calculations, the ellipse returns very closely to its original
position after one period. Note that the fluid inside the
ellipse rotates as a rigid body (since w is constant there3; the
fluid outside undergoes a more complicated deformation.

Figure 22 plots the L' and L™ errors in velocity and
vorticity and the moment errors against time. Clearly the
L™ error in vorticity is O(1), as one would expect, while the
L= error in velocity is uniformly smatll.

7.5. Interacting Vortex Patches

Qur final numerical examples are flows composed of
several interacting vortex patches. Since exact solutions are
unavailable, we estimate the errors in vorticity and velocity
by differencing. We evaiuate the vorticity and velocity fields,
stored on the triangulation, by linear interpolation to fixed
uniform grid; then we difference the successive calculations.
This gives error estimates which agree well with the exact
errors when the latter are available.

Our first test case without an exact solution uses three
randomly placed patches, each a scaled version of Perlman’s
test case. The vorticity is plotted in Fig. 23, for e =0.016 and
0.004, at times ¢ =0, 25, and 200. The errors estimated by
differencing are plotted in Fig 24, using ¢ =0.064, 0.016,
0.004, and 0001 and fourth-order Runge-Kutta with
n=96, 128, 192, and 256 time steps up to ¢ = 200.

Our second test case is the interaction of circular patches
of constant vorticity, as studied in [11, 52, 50] by spe-
cialized methods. We do not expect greal accuracy from our
general-purpose code; we are pushing the limits of
adaptivity. Figure 25 shows the vorticity computed with
g=0.016, 0.004, and 0.001, at times =0, 10, and 40. The
errors estimated by differencing are plotted in Fig. 26, using
fourth-order Runge-Kutta with »=64, 96, and 128 time
steps up to t =40.

8. GENERALIZATIONS
Our method can be extended to model more general

flows. 1n this section we consider the following generaliza-
tions:
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topology.

+ Boundary conditions for the 2D Euler equations.
« The Navier-Stokes equations in R°.

= Boundary conditions for the 2D Navier-Stokes
equations and vorticity generation at the boundaries.

» Higher order methods,
+ Euler and Navier-Stokes equations in R?,

We have not implemented these generalizations; this is
work in progress.

8.1. Boundary Conditions for the 2D Euler Equations

Let © be the domain containing the flow, 92 its
boundary, and v the outward unit normal (see Fig. 27).
The no-flow boundary condition reads

u-v=0 on 402 (8.1)
In the vorticity formulation, this condition must be trans-

lated from the velocity to the vorticity. This can be obtained

in the following way. From Eq. (2.5} it follows that the
tangential derivative of y along the boundary vanishes:

i = on 922,
ot
where 1 denotes the unit vector tangent to #Q2. This means
that y 1s constant along the boundary and, since the stream
function is determined only up to a constant anyway, we
can set it to be zero. The Poisson equation for i is therefore

~ M=
y=0

in Q

8.2
on 082, (82)

This is a standard problem and there are many ways to
solve it numerically. An attractive method in this setting is
to represent i as the volume potential

Vo x) = L G(x— vy wly) dy
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FI1G. 19. Adaptive triangulation of Perlman’s test case at times ¢ =0, 47, and 32z (left to right), with ¢ =0.064 (top row), 0.016 (second row}, and
0.004 (last row).
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FIG. 21. Grayscale plots of the Kirchhoff elliptical vortex at times r =0, T/4, and /2 {left to right), with £ = 0.016 (top row) and 0.004 (last row).

One way to compute w" " '(z) is to solve (8.4) exactly using
the gaussian kernel 1z, 7)=(1/4nt)exp(— |z}°/4t). This
would give

@"(z) :j Tlz—7, 4 d40) D7) d. (8.5)
R
Then the piecewise linear function w”*'(z) is obtained by
projecting @” into the space of piecewise linear functions
with the same values at the nodes:
wnH(Zf):Ut’n(Zi)s

i=1..N

This procedure, however, is not very accurate, because
the projection onto piecewise linear functions introduces
high frequency components in the vorticity distribution,
producing a spurious diffusion. A simple 1D calculation
shows that the local truncation error is Q(h* . /u 4t). This
makes the method inaccurate for small time steps. The
Green’s function approach requires the computation of the
integral (8.5). A naive implementation of this integral would
give a computational complexity O(N?). Fast algorithms
can be constructed in this case and the complexity can be

reduced to O(N) [47]. One advantage of this approach is
that it does not suffer from any stability restriction, and
therefore it can be used with arbitrarily large values of u Ar.
In view of these considerations, this approach seems inter-
esting in the presence of large viscosities. For small values of
the viscosity, alternative approaches can be considered. We
propose here two possibilities, one based on the discretiza-
tion of the Laplacian on a Vorenoi mesh and the other
obtained by collocation.

The discrete Laplacian is defined in the following way.
For any simply connected bounded domain # < R? with
regular boundary 0%, it is

L Ag dz=v[[3 @a’v.

yav )

Discretizing this relation on a Voronoi polygon £ (see

Fig. 4), one defines the discrete Laplacian B by
¢(Zj) — ¢(Zf) /

|zj_zi!

Biz)=~ %

if»
Af'jaef
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where 4, is the area of the Voronoi polygon corresponding
to z;, and J;; is the length of the edge corresponding to points
z;and z;,

The diffusion equation (8.4) for w becomes

dw,;
ar Y By,
J#i (8.6)
wi(fn}:dj"(zi)s {:19 ey N,
with
1, o
.= Ai‘zj—zfr ST
v 1 I .
-y —, =1
Aik#flzk_—zl'l /

The Voronoi diagram and the Delaunay triangulation are

dual structures. It is easy to obtain one, once the other is
known.

The discrete Laplacian has been used for the solution of
the Navier-Stokes equation in conjunction with the vor-

3BY/14172-8

tex—blob methaod for the computation of the velocity [40].
In that case the primary variables were the circulation
associated to each vortex. It was possible to prove several
conservation properties for the diffusion equation dis-
cretized on a Voronoi mesh. In our case, the vorticity
distribution is a piecewise linear function on the Delaunay
trianguiation and such conservation propertics no longer
hold. It would be worthwhile to explore the properties of the
discretization of the heat equation on a Voronoi mesh.

An alternative approach, which is more consistent with
our framework, consists in a collocation-Galerkin method.
Multiplying both sides of (8.4) by a test function ¢{z) with
compact support and integrating, we obtain

j¢(z) Wiz, 1) dz=—pt fwa(z) Voz, 1) dz. (8.7)

4
di

We associate to a given triangulation a set of piecewise
linear functions {¢,(z), k=1, .., N} such that

Bilz;) =04
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FIG. 23. Three interacting paiches of smooth vorticity, at times 1 =0, 25, and 200 (left to right}, with ¢ =0.016 (top row) and 0.004 (second row}.

and consider the projection of Eq. (8.7) on the space of
piecewise linear functions on the triangulation. We obtain

ZMM(D.': *HZKMCU.', (8.8)

where

M=) 0.2 e, Ki= [ VBul2) V4,(0) =

The quantities M; and K;; are easily computable from the
triangulation. M ; is the mass matrix and K, is the stiffness
matrix associated to the triangulation [ 17]. These matrices
can be easily computed from the triangulation. System (8.8)
could be discretized in time by a Crank—Nicolson method in
order to avoid the stability restriction on the time step:

w(f+l +CU”

f—
> =0.

ot — @
4 7 J
Z.‘ My u At + Z Ky
J J
It is not clear to the authors what the best way is to solve the
large, sparse linear system (8.9) for "', The L} factoriza-

(8.9) -

tion does not seem to be convenient, since the triangulation
changes at every time step, Probably the best strategy
consists of an iterative method such as a preconditioned
conjugate gradient or GMRES.

8.3. Boundary Conditions for the Navier-Stokes Equations

We consider now the treatment of the boundary condi-
tions for the Navier—Stokes equations in a bounded region
2. The no-slip boundary condition for a boundary at rest

reads

u=20 on 002,

In order to enforce this condition on J€ we make use of
Chorin’s method, which consists in placing a vortex sheet
on the boundary to compensate for the tangential compo-
nent of the velocity induced by the vorticity distribution
inside the domain [15].

We discretize the time and consider a fractional-step
method for the semidiscrete Navier—Stokes equations. Let
w™{z)} be the vorticity distribution at time ¢,. The system is
updated in the following way:
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FIG. 24. Errors for smooth patches of vorticity, estimated by differencing. Relative L' error in velocity, circulation errors, and second moment errors

vs time.

FIG. 25. Three interacting patches of constant vorticity, at times 1 =0, 10, and 40 (left to right), with ¢ =0.004 (top row) and 0.001 (bottom row).
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FIG. 26. Errors for constant patches of vorticity, estimated by differencing. Relative L' error in velocity, circulation errors, and second moment

errors vs time.

(a) Solve Eq. (8.2) for "{z) and compute the velocity
field u”=V"i". This velocity field satisfies the no-flow
condition, but not the no-slip condition.

(b} Consider the intermediate vorticity
wn+ 12 w” + 2(1{" 'f) 509,

where 1 is the unit vector tangent to the boundary. Solve the
diffusion equation for «,

day y

da _

o (8.10)
w(z, 1,) =w"*17(z)

and determine @"* '(z).

(c) Compute the velocity field corresponding to the
vorticity distribution @”* '(z} and solve the Euler equations
in the time interval (7, {,, ., ).

The new vorticity distribution will be denoted w” * '(z). The
convergence of this algorithm for the semidiscrete equations
is proved in [8] in the case of the hall plane. We prepose
here the following discretization of the algorithm, Let us
suppose we know the vorticity distribution w”(z) which is
associated to a given triangulation & " at time ¢,. The first

9}

FIG. 27. A domain £ and its boundary d£2.

step consists in solving the Poisson equation for " with
Dirichlet boundary conditions. Then, once the velocity #” is
computed on the boundary, the diffusion step is discretized
in the following way. First, the triangulation is extended
beyond 2€2, by reflecting the triangles with one side on &5£2.
If the size of the triangles is small compared to the radius of
curvature of 92, the triangulation on the exterior of Q
reproduces a symmetric copy of the first line of triangles,
with a small distortion (see Fig. 28). After the triangulation
has been extended, the function y"(z) is extendéd symmetri-
caily beyond 8€2. This will provide a discretization of the
zero Neumann condition for the diffusion equation.
Next we multiply (8.10) by ¢, and integrate:

d
= p) (@) de=p [ g A" dz 2 [ ot ) dg

k=1, ..N. (8.11)

If z, is inside 2 then the second term on the right-hand side
1s zero, and one obtains an equation of the form (8.8). If z,
is on 72 then one obtains

chid)i=.u2 Myw,+2W,,

F1G, 28. Symmetric extension of the triangulation beyond dw.
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where W, is a line integral along the segments z, _,z, and
ZpZgat.

8.4. Higher Order Methods

Our method introduces several approximations; space
and time discretization, and truncation of the series in the
fast velocity evaluation, In Section 5 we saw how to control
the error in the fast velocity evaluation, and the time
discretization error can be made small by using high order
ODE solvers. Runge-Kutta or multistep methods can be
used for this purpose. The main cause of inaccuracy lies in
the spatial discretization. In this section we improve the
spatial accuracy of the method.

The spatial discretization error in our method is due to
the approximation of w by a piccewise linear function. Such
an approximation is second order in the size of the triangles.
A better accuracy could be obtained by using basis func-
tions that are polynomials of degree greater than one. There
are several possibilities for obtaining higher order accuracy
in the approximation of functions of two variables, which
are commonly used in the finite element method. Most of
these techniques, however, require values of the function at
points that are not vertices of a triangle [17]. Such techni-
ques have an intrinsic difficulty in this setting. Suppose we
make use of the value of the function w at the middle of the
edge of the triangles. If we move these points with the flow,
thelr vorticity is unchanged, but at the next time step their
location will not be in the middle of the edge of a triangle.
If we leave the point at the middle of the edge, then at the
next time step the value of the vorticity at this point will
change. We may think of correcting this effect by adding a
term that takes into account the fact that the middle of the
edge is not a Lagrangian point (up to O(A°)), but then
topological difficulties arise.

For these reasons, it is more convenient to use g higher-
order approximation formula based on quantities defined at
the vertices of the triangulation. We propose to use the
space of piecewise cubic polynomials on the triangulation,
with equal coefficients for the x’y and xy? terms.

On each triangle such a function ¢{x, y)is defined by nine
parameters:

dx, y)=a,+a,x+as y+a, x> +asxy+agy’

Fa,xd +ayx?y v x?) v ay {8.12)
The nine parameters are uniquely defined by giving the
value of the function and its partial derivatives at the three
nodes of the triangle.

Let us denote by # and » the x and y components of the
velocity u, and by ¢ and 5 the components of Vo:
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Then, by taking the x and y derivative of the equation for w
(Eq. (2.3) in Section 2), one obtains the transport equations
for w, &, and 5:

a’w_
dt

dt ou dv
o '(ﬁ%ﬂ)

dn fu ., Ov
i (Geryn)

4
7

0,

where

=4, +(u-V4

If we are able to compute u, v, 4, v,, u,, and v, due to a
piecewise cubic polynomial of the form (8.12} then we can
solve the system of differential equations

dx;
dr
@=U(Z|-},

dr

az

7{’ =—(udz;) &, +uvlz;) 1)

d’?s_

E = _(uy(zi) &t D_\-{ZJ) ;.

u(z;),

It is possible to extend our velocity evaluation method to
compute such quantities. Indeed, u is split into a local term
u, and a far field term u,. The first involves terms of the
form

.[ Kiz—zYa,(z', 1) dZ',

T

where w,, is a polynomial of the form (8.12). Such integrals
can be computed analytically as shown in [13]. The
derivative of the field can be computed analytically as well;

oK . ,
J T (z—z2) w,lz')dz
. 0%

can be integrated exactly as a line integral along the
boundaries of the triangulation &, and the far-field
contribution is automatically provided by the O(N*" log &)
algorithm (see Section 5.4) which returns the first p terms of
the Taylor expansion of the field.

A last observation concerns the expected order of
accuracy of such an aigorithm. Piecewise linear elements
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give O(h*), quadratic elements O(4?), and cubic elements
O(h*). However, we are not using the full subspace of
piecewise cubic elements here, because each element has
9 free parameters instead of 10. This degrades the accuracy
of the approximation to O(%*). For smooth flows the
higher accuracy should compensate for the extra work
needed to compute the derivative of the velocity field, We
expect the computational time to be no more than twice the
time required for the piecewise linear method for the same
number of the points, because the far-field terms are
obtained for free. For very smooth flows, it might even be
more economical to use quartic polynomials to obtain
O(h*) accuracy and evolve second derivatives as well.

8.5. Extension to Three Dimensions

The method here presented could be extended, in
principle, to the incompressible Euler and Navier-Stokes
equations in three dimensions. The extension, however, is
not a trivial one.

The hardest problem is the computation of the Biot-
Savart integral on a piecewise linear vorticity distribution.
It is not clear whether a piecewise linear function times the
Biot—Savart kernel can be integrated analytically on a
tetrahedron in three dimensions. If it is not possible, then
one should try to reduce the computation of such integrals
to combinations of integrals that depend on [ewer
parameters. Then these new “special functions” could be
tabulated and their values computed by interpolation. The
feasibility of such a procedure, however, is questionable,
since the next problem is the development of a fast algo-
rithim for the computation of the far field in three dimen-
stons. The fast multipole method in three dimensions is not
as efficient as it is in two dimensions. This would make the
velocity evaluation quite slow. Furthermore, the problem of
the boundary conditions in @ in three dimensions is more
complicated than in 2D.

In view of these considerations, we think that a different
approach could be more effective. A finite element method
could be used to solve the Poisson equation for the vector
velocity potential w(x, y, z, t):

—dy =,

the velocity field is then

u=Vxy. (8.13)
In order to discretize this equation, we need to construct a
3D grid which is the 3D analogue of the Delaunay tri-
angulation. This can be done by dividing the space into
Delaunay tetrahedra that are defined in a way similar to the
two-dimensional case. Then we consider a basis # of
piecewise linear functions on the triangulation, {¢,(x),
i=1,.., N}. By going to a weak formulation and projecting
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on the subspace 4, the Poissen equation is described in the
usual form,

Y Kyw=) My,
i i

where the matrices M and K are the mass and stiffness
matrix corresponding to the given triangulation in space. In
order to obtain the values of u,x~u(x,), we multiply
Eq. (8.13) by ¢, and integrate. We obtain for «7,i=1, .., N,
x=1, 2, 3, the system

T Mur=Y(Shui-Sh  (814)
i J
where (o, f,7) is a cyclic permutation of (1,2,3),
(x, x% x)=(x, ¥, 2), and
x_ a¢j(x)
SU.—Ié,-(x) L dx.
The Euler equations in three dimensions are
a
—w+(u-V)m=(m-V)u.
at
This equation can be written as
dw
?—(m-V)u (8.13)

along the fluid lines dx/dt = u.
Let £ be the right-hand side of Eq. (8.15):

S out
Lo ox*

x=1

Q¢ =

Then we can compule a piecewise linear approximation of
QF at the nodes in the usual way. We obtain the system
for Q7.

3
ZMU'Q_:?ZZ Y, o Siul.
)

i oa=1

Once uf and 27 are known, the position and vorticity at the
nodes can be updated by solving the equations

Of course there is no guarantee that the natural
invariants of the three-dimensional Euler equations are
conserved in this discrete method. In particular, the total
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vorticity will not be conserved. One should check how well
conservation of these physical invariants is maintained.
The extension to the Navier-Stokes equations could be
done in a way similar to the two-dimensional case, i.e., with
a splitting method. The diffusion step for the vorticity vector
could be treated by a Galerkin—Crank—Nicolson method.

9. CONCLUSIONS

We have presented an efficient and accurate new adaptive
method for the 2D Euler equations. OQur method resembles
the vortex method, but differs in approximating the
vorticity by triangulation and interpolation rather than a
sum of blobs. This alteration produces a method which is
more accurate for long-time computations.

The efficiency of our method is due to an efficient
Delaunay triangulation method, to a fast velocity evalua-
tion technique related to the fast multipole method, and to
the construction of an adaptive initial grid. Qur numerical
resuits demonstrate that each of these techniques plays an
essential role in making our computations accurate and
efficient. We present a wide spectrum of numerical results,
for simple classical test problems as well as complex
problems without known solutions. In all cases, our method
exhibits long-time accuracy. Even discontinuous initial data
can be evolved accurately using our adaptive grid technique.

The method generalizes in various ways, to three-
dimensional problems, viscous flow and domains with
boundaries, and appears highly promising as a tool for
engineering analysis of complex fluid flows.

APPENDIX: THE KIRCHHOFF ELLIPTICAL YORTEX

A rotating elliptical patch of constant vorticity is an exact
solution of the Euler equations. A discussion of this topic
can be found, for example, in [26]. We summarize it here
for completeness.

Let x’0Oy’ denote a fixed cartesian frame of reference in
R2 Let us consider the 2D Euler equations with the initial
condition for the vorticity,

2 +2
. X
)y if ?+%<1
w(x', yfao): +2 2
o X7y
0 if F+F2 1,

where @, is constant.

Let us make the ansatz that the solution for the vorticity
distribution is an elliptical patch of constant vorticity which
rotates without changing shape with an angular velocity m,.
We shall prove that this ansatz is consistent with the
Poisson equation for the stream function and we derive an
expression for o,
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Let us consider a frame of reference which is at rest with
the rotating ellipse and let us denote by x and y its coor-
dinates. In this frame of reference the stream function does
not depend on time. Let 2 denote the region with vorticity
;. In the region outside £2 the stream function satisfies the
equation

82 82
5,\%%-*—6—}:‘?:0' (A1)

The fluid lines cannot cross the boundary Q. The boundary
condition on ¢€2 is therefore

—U-v=wyr-T,
where v and t are unit vectors respectively normal and

tangent to the boundary, and r=(x, y). The boundary
condition for i is, therefore,

o
—Eg-:wor-r. (A.2)
It is convenient to make use of elliptical coordinates,
x=c¢ cosh & cos, y=csinh £ sinn, (A3)

where ¢>=a’— b In these coordinates the Laplace
equation for the stream function becomes

ofy 0% N
SR S Q2
6§2+8n2 0 in R\
{A4)
op 5 .
——= —WuC” SN} CO5 X on d€.

on

This equation can be solved by separation of variables.

Let ¥ =X(&)H()+AE+Byn+C. By inserting this
expression into (A.4) and imposing that the velocity u
vanish at infinity, one finds

W =2 (a+b) e~ cos 2n + AL

- (A.5)

The constant A4 is obtained by imposing that the circulation
is the integral of w,

3§ t - dr = nabw,
2
that is,

2n aw
— L 55— dn = nabw.
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